If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30n^2+44n-89=0
a = 30; b = 44; c = -89;
Δ = b2-4ac
Δ = 442-4·30·(-89)
Δ = 12616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12616}=\sqrt{4*3154}=\sqrt{4}*\sqrt{3154}=2\sqrt{3154}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-2\sqrt{3154}}{2*30}=\frac{-44-2\sqrt{3154}}{60} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+2\sqrt{3154}}{2*30}=\frac{-44+2\sqrt{3154}}{60} $
| 5^(2x+1)=36 | | 12c−-6c+-13c=20 | | 3p+2p+p=18 | | 60n^2+88n-178=0 | | 12a-12a+3a-2a=14 | | 7u+72=16u | | 12a−12a+3a−2a=14 | | 5(4x-9)=6(x+2) | | ∆z+∆z+90°=180° | | 9k+5=41 | | 9p-6=120 | | 3^x=92 | | V+13=2(v-7) | | x3-5=9 | | 6x^2-31x+35=2/3 | | 2n=5+9 | | 15g-8g-6g=18 | | 14k+17=1 | | 14w+4w-w-17w+2w=18 | | -16+x/4=-5 | | 14w+4w−w−17w+2w=18 | | 4z-10+8=-5 | | 15x^2-30x^2=0 | | (x/3)+(5/2)=(-3/2 | | 16n+-7n=18 | | 11k-10k=15 | | 10g-2g=16 | | (x/3)+(5/2)=(-3/2) | | 6.7x+3.5=30.3 | | 5x2=7-4 | | X2+14x-48=0 | | d−4.4=4.7 |